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Abstract
We evaluate by analytical means the Ruelle ζ -function for a spin model with
global coupling. The implications of the ferromagnetic phase transitions
for the analytical properties of the ζ -function are discussed in detail. In the
paramagnetic phase the ζ -function develops a single branch point. In the low-
temperature regime two branch points appear which correspond to the
ferromagnetic state and the metastable state. The results are typical for any
Ginsburg–Landau-type phase transition.

PACS numbers: 05.20.−y, 05.45.Ac, 05.70.Fh

1. Introduction

Spectral properties of linear operators play an important role in quite diverse fields of theoretical
physics, e.g. the time evolution operator in dynamical systems theory, the Hamiltonian in
quantum mechanics and transfer operators in equilibrium statistical mechanics. Various types
of ζ -functions have been introduced as a tool to evaluate the spectrum of linear operators
[1]. Roughly speaking, ζ -functions provide an intelligent way for writing the characteristic
equation of a linear operator. In particular, there exist suitable expansion and approximation
schemes for evaluating ζ -functions in a systematic way (cf e.g. the seminal article [2] on cycle
expansions of dynamical systems). Evaluating the analytic behaviour one is able to determine,
e.g. ergodic properties of dynamical systems, spectral properties like the density of states in
quantum physics, or the partition function and spatial correlations in statistical physics (cf [3]
and references therein for a comprehensive overview).

The analytical properties of ζ -functions are therefore of great interest. Only in simple
cases, such as uniformly hyperbolic dynamical systems or statistical mechanics in the high-
temperature phase, one has, to some extent, an overview over the analytical structure.

3 Present address: Max–Planck–Institute for the physics of complex systems, D-01187 Dresden, Germany.
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Qualitative changes such as bifurcations in dynamical systems or thermodynamic phase
transitions in statistical physics are reflected by qualitative changes of the spectrum of
the corresponding linear operator, and thus leave characteristic fingerprints in the analytic
properties of ζ -functions. Classical examples are intermittent motion which causes branch
points [4], phase transition behaviour in spin chains caused by long-range interactions [5, 6],
or anomalous transport in low-dimensional deterministic dynamical systems [7]. But there are
only a small number of examples available where the ζ -function can be evaluated by analytical
means.

Here we compute the ζ -function for a simple model of equilibrium statistical physics, a
spin model with global coupling. Such a mean field model exhibits a phase transition in the
thermodynamic limit if the strength of the coupling constant exceeds a certain threshold. We
will discuss in detail how the analytical properties of the ζ -function reflect the phase transition.
We keep our analysis elementary so that the whole presentation is completely self-contained.

2. Mean field spin model

If ZN denotes the partition function of a system with N particles then the corresponding
ζ -function is defined through the relation

ζ(z) = exp

( ∞∑
N=1

zN

N
ZN

)
. (2.1)

The complex-valued argument z plays the role of a fugacity-like quantity. Since the asymptotic
behaviour of the partition function is given by ZN ∼ exp(−Nf ) for large N, where f denotes
essentially the free energy per particle, expression (2.1) develops a singularity at z = exp(f ).
Actually, this singularity is the singularity with smallest modulus in z.

The logarithm of the ζ -function, ln ζ(z), is obviously the formal integral of the grand
partition function with respect to z. But contrary to the grand partition function the ζ -function
directly relates to the properties of transfer operators [2]. Thus ζ -functions play a prominent
role when spectral properties of linear operators are at stake, like in quantum chaos, ergodic
theory or equilibrium statistical mechanics. The analytical properties of the ζ -function, i.e.
poles and other singularities, directly reflect the spectrum of the corresponding linear operator.
Of particular interest are cases when qualitative changes are involved, e.g. in the vicinity of
phase transition points.

To investigate the analytical properties of equation (2.1), we resort to a simple spin system
which displays a phase transition in the thermodynamic limit. Consider the globally coupled
Ising Hamiltonian

βH = −H

N∑
ν=1

σν − J

2N

N∑
ν,µ=1

σνσµ (2.2)

where σν = ±1 denotes the single site spin variable and J � 0 is the coupling constant. It
is standard textbook knowledge that the system undergoes a second-order phase transition at
H = 0 and J = Jc = 1. For simplicity we have absorbed the temperature β in the parameters
of the model. Evaluation of the partition function for finite N is standard and yields (to
keep our presentation self-contained we have summarized the main computational steps in
appendix A, although the calculation can be found in most textbooks on statistical mechanics)

ZN = 2N

√
N

π

∫ ∞

−∞
exp(−Ng(u)) du (2.3)
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where

g(u) = u2 − ln cosh(u
√

2J + H). (2.4)

Combining equations (2.1) and (2.3), we obtain for the ζ -function

ln ζ(z) =
∞∑

N=1

zN

N
ZN = 1√

π

∫ ∞

−∞
Li1/2[2z exp(−g(u))] du (2.5)

where we have used the polylogarithm4 [8, 9]

Lis[z] =
∞∑

N=1

zN

Ns
(2.6)

which is a generalization of Euler’s dilogarithm (cf e.g. [10] for a recent application of the
polylogarithm in statistical mechanics). We are thus left with the discussion of the analytical
properties of integral (2.5).

3. Analytical properties of the ζ-function

As a simple exercise let us first consider the case without interaction J = 0. Because
of equation (2.4) the inverse of g(u) has two branches g−1

1,2(v) = ±√
v + ln(cosh(H)) and

substitution yields

ln ζ(z) = 1√
π

∫ ∞

− ln cosh(H)

1√
v + ln(cosh(H))

Li1/2[2z exp(−v)] dv

= 1√
π

∫ ∞

0

1√
v

Li1/2[2z cosh(H) exp(−v)] dv

= − ln(1 − 2z cosh(H)). (3.1)

For the last step we used the identities (B.3) and (B.2) of the polylogarithm. Thus the
ζ -function has a simple pole at z = 1/(2 cosh(H)) = exp(f ).

Let us now consider a nonvanishing coupling, but let us focus on the case without external
field, H = 0. In the high-temperature regime J < Jc = 1, equation (2.4) yields a symmetric
convex function with a minimum at the origin (cf figure 1). Thus the inverse consists of two
branches g−1

1 (v) = −g−1
2 (v) � 0 as in the case of vanishing coupling. Using substitution

equation (2.5) reads

ln ζ(z) = 2√
π

∫ ∞

0

1∣∣g′(g−1
1 (v)

)∣∣Li1/2[2z exp(−v)] dv. (3.2)

Since the first factor of the kernel, 1/|g′(g−1
1 (v))|, has a square root singularity at v = 0

and is otherwise analytic (cf figure 1), the analytical properties of the whole expression are
inferred by applying the asymptotic property (B.5) of the polylogarithm. Thus using

g′(u) = 2(1 − J )u(1 + O(u2)) (3.3)

g−1
1 (v) =

√
v

1 − J
(1 + O(v)) (3.4)

we obtain form equations (3.2) and (B.5) the asymptotic result

ln ζ(z) � − 1√
1 − J

ln(1 − 2z). (3.5)

4 Usually, one reserves the notion polylogarithm for equation (2.6) with integer s. For non-integer values of s, one
sometimes calls equation (2.6) the Joncquiéres function which is closely related to the Lerch transcendent.
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Figure 1. Left: potential (2.4) in the high-temperature regime for J = 0.5. Right: modulus of the
derivative of the inverse branch, 1/|g′(g−1

1 (v))| (cf equation (3.2)).
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Figure 2. Numerical evaluation of the ζ -function (2.5) for z < 1/2 and different values of
the coupling: squares J = 0, circles J = 0.5, triangles J = 0.9. Dotted lines indicate the
slope according to the analytically obtained asymptotic behaviour (3.5). Inset: the same data for
J = 0.99.

Thus the ζ -function develops a branch point (1 − 2z)−1/
√

1−J . The exponent of the branch
point changes continuously when changing the coupling strength J . The actual value of the
exponent is determined by the prefactors of our asymptotic expansion and thus depends on
the coupling strength. Overall, even in the high-temperature phase the ζ -function develops a
nontrivial analytical behaviour in contrast to spin chains with finite-range interaction, where
meromorphic behaviour prevails. The exponent of the branch point tends to minus infinity
when the phase transition point J = Jc = 1 is approached. The analytical result may be
confirmed by numerical evaluation of integral (2.5) (cf figure 2).5

In the ferromagnetic case J > Jc = 1,H = 0 potential (2.4) develops minima
vmin = g(±umin) at u = ±umin. In the range vmin � v � 0 two additional branches of
the inverse exist, g−1

3 (v) = −g−1
4 (v) � 0 (cf figure 3). Using appropriate substitutions the

ζ -function (2.5) splits into two different contributions and thus reads

ln ζ(z) = ln ζ1(z) + ln ζ2(z) (3.6)

where we have introduced the abbreviations

ln ζ1(z) = 2√
π

∫ ∞

vmin

1∣∣g′(g−1
1 (v)

)∣∣Li1/2[2z exp(−v)] dv (3.7)

5 Numerical evaluation of the polylogarithm and of the corresponding integrals has been achieved with

MATHEMATICAR◦.



The Ruelle ζ -function for mean field models 5101

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

v=
g(

u)

u 1/|g’(g-1(v)|

 

 

 

 

 

 0  1  2  3

Figure 3. Left: potential (2.4) in the low-temperature regime for J = 2.5. Right: modulus of the
derivative of the two inverse branches, 1/|g′(g−1

1 (v))| (full line) and 1/|g′(g−1
3 (v))| (broken line)

(cf equations (3.7) and (3.8)).

ln ζ2(z) = 2√
π

∫ 0

vmin

1∣∣g′(g−1
3 (v)

)∣∣Li1/2[2z exp(−v)] dv. (3.8)

Because of the different inverse branches, the ζ -function develops as usual a product structure
ζ(z) = ζ1(z)ζ2(z), where the analytical properties of the two factors are determined by
expressions (3.7) and (3.8). As in the previous case the factor ζ1(z) has a branch point for
2z exp(−vmin) = 1 since in this limit the two square root singularities of the kernel collide.
Using the expansions

g′(u) = g′′(umin)(u − umin)(1 + O((u − umin)
2)) (3.9)

g−1
1 (v) = umin +

√
2

g′′(umin)

√
v − vmin(1 + O(v − vmin)) (3.10)

equation (3.7) yields

ln ζ1(z) � −
√

2

g′′(umin)
ln(1 − 2z exp(−vmin)) (3.11)

when taking the asymptotic result (B.5) into account. For the factor ζ2(z), we expect at least
two branch points to occur, at 2z exp(−vmin) = 1 and at 2z = 1, since the first factor of the
kernel provides square root singularities at v = vmin and at v = 0. The leading branch point,
i.e. that with smallest modulus, can be obtained using expansions (3.9) and

g−1
3 (v) = umin −

√
2

g′′(umin)

√
v − vmin(1 + O(v − vmin)). (3.12)

We hence obtain

ln ζ2(z) � −
√

2

g′′(umin)
ln(1 − 2z exp(−vmin)). (3.13)

Thus the ζ -function develops a leading branch point z = exp(vmin)/2 with exponent
−2

√
2/g′′(umin) and a branch point at z = 1/2 which is apparently much more difficult

to evaluate.
Finally, at the critical point J = Jc = 1,H = 0 the potential has two inverse branches

only g−1
1 (v) = −g−1

2 (v) so that equation (2.5) reduces again to equation (3.2) where now
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Figure 4. The double logarithm of the ζ -function in dependence on − ln(1 − 2z) for J = 0.9999
(symbols). Full line: asymptotic behaviour for J = Jc according to equation (3.16a); dotted line:
linear graph with slope 1/4 (cf equation (3.16b)). Inset: the same data in a double logarithmic plot
(cf figure 2). Crossover to normal behaviour appears at about z = 20 since J < Jc = 1.

the expansions

g′(u) = gIV (0)

3!
u3(1 + O(u2)) (3.14)

g−1
1 (v) =

(
4!

gIV (0)
v

)1/4

(1 + O(
√

v)) (3.15)

are valid. Using the asymptotic formulae (B.3) and (B.4) respectively, equation (3.2) evaluates
to

ln ζ(z) �
4
√

3

2
√

π
�(1/4)Lis=3/4[2z] (3.16a)

�
4
√

3

2
√

π
(�(1/4))2(1 − 2z)−1/4. (3.16b)

Thus the ζ -function in the critical case develops an essential singularity at z = 1/2. A triple
logarithmic plot clearly displays the critical exponent −1/4 (cf figure 4). Furthermore, the
asymptotic formula (3.16a) is even able to capture the z-dependence in a large region of the
complex plane.

4. Discussion

We have analysed the analytical properties of the Ruelle ζ -function of the globally coupled spin
model in the high- and low-temperature regime as well as at the critical point J = Jc = 1.
In the high-temperature phase J < Jc the ζ -function has a branch point at z = 1/2 with
asymptotic expansion (cf equation (3.5))

ζ(z) � (z − 1/2)−1/
√

1−J , (J < Jc, z → 1/2). (4.1)

The exponent diverges when the critical point is approached. In the low-temperature phase
J > Jc the ζ -function develops two branch points at z = exp(f ) and at z = 1/2 where
f < − ln 2 denotes the mean field free energy per particle. While the leading branch point
corresponds to the thermodynamic equilibrium, the nonleading branch point is generated by
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Figure 5. Inverse ζ -function in dependence on z in the ferromagnetic phase (J = 2), left: real part,
right: imaginary part. Branch points occur at z = exp(f ) = 0.3607 . . . and z = 1/2 causing a cut
along the real axis. The inverse ζ -function takes small values along this cut between z = exp(f )

and z = 1/2 (cf figure 6). Apparently no further singularities are visible.
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Figure 6. Real and imaginary parts of the logarithm of the ζ -function along the real axis,
z = x − i0+, for J = 2. Symbols: evaluation of equation (2.5), line: evaluation of equation (4.6).
Singularities at z = exp(f ) = 0.3607 . . . and at z = 1/2 are clearly visible (cf figure 5).

the metastable state. The leading term of the asymptotic expansion reads (cf equations (3.11)
and (3.13))

ζ(z) � (z − exp(f ))−2
√

2/g′′(umin), (J > Jc, z → exp(f )) (4.2)

where the exponent is essentially determined by the mean field magnetic susceptibility. We
suspect that in both cases, the high- and the low-temperature phase, no further singularities
appear, apart from those mentioned above. But a real proof requires a more sophisticated
discussion of integral (2.5). However, a direct numerical evaluation (cf figure 5) confirms
such a conjecture. Equations (4.1) and (4.2) can be obtained simply by inserting the saddle-
point approximation of the partition function (2.3) into definition (2.1). But such a reasoning
misses the nonleading branch point of the low-temperature phase.

To unveil the nature of the nonleading singularity at z = 1/2, we consider a slice along
the lower edge of the cut, z = x − i0+,

ζ(x) = r(x) exp(iϕ(x)) = lim
ε→0+

ζ(x − iε). (4.3)

Figure 6 clearly reveals the leading singularity at z = exp(f ) and the nonleading branch
point at z = 1/2. The modulus Re(ln ζ(x)) = ln r(x) shows logarithmic behaviour, and the
complex phase Im(ln ζ(x)) = ϕ(x) simultaneously develops a discontinuity at the leading
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singularity. Actually, such a property is not a coincidence as both quantities are tied together
by a Kramers–Kronig-type relation (cf appendix D). For the nonleading branch point, the role
of modulus and phase are seemingly interchanged as logarithmic behaviour appears for the
phase and the discontinuity for the modulus. Since the leading branch point of ln ζ(z) is of
the type (z − exp(f ))a , we conjecture that the nonleading branch point is a power law with
imaginary exponent (z − 1/2)iα . In fact,

ln(z − 1/2)iα|z=x−i0+ = iα ln |x − 1/2| − αφ (4.4)

holds where the complex phase φ of z − 1/2 = x − 1/2 − i0+ jumps from φ = π to φ = 2π

when x changes from x < 1/2 to x > 1/2. Thus equation (4.4) reproduces all the analytical
features visible in figure 6 at the second branch point. Accordingly, the imaginary part of the
exponent, α, can be obtained, e.g. from the scaling behaviour of ϕ(x) at x = 1/2.

Fortunately, equation (C.4) eventually provides us with a simple analytical expression for
ϕ(x). By virtue of ζ(x + iε) = (ζ(x − iε))∗ we have

−2iϕ(x) = lim
ε→0+

(ln ζ(x + iε) − ln ζ(x − iε)). (4.5)

Using equations (2.5) and (C.4), we just obtain

ϕ(x) = −
∫

u�0,ln(2x)�g(u)

2√
ln(2x) − g(u)

du. (4.6)

Although this integral cannot be solved by elementary methods, its asymptotic properties for
x → 1/2 can be obtained quite straightforwardly (cf appendix E). We end up with

ϕ(x) �
√

2

−g′′(0)
ln |x − 1/2| = 1√

J − 1
ln |x − 1/2|. (4.7)

Comparison with equations (4.3) and (4.4) yields for the imaginary part of the exponent
α = 1/

√
J − 1 so that the singular part of the ζ -function at z = 1/2 is inferred to be

ζ(z) � (z − 1/2)i/
√

J−1, (J > JC, z → 1/2). (4.8)

Such a result nicely complies with the high-temperature behaviour, equation (4.1), since the
formally negative susceptibility of the metastable state causes a branch point with imaginary
exponent in the low-temperature phase.

When approaching the critical point J = Jc = 1, the exponents of the high-temperature
as well as the low-temperature behaviour (cf equation (4.1) respectively equations (4.2) and
(4.8)) become singular. In particular, the two branch points of the low-temperature phase
(cf figure 6) approach each other; the height of the discontinuities on the real axis increases
(cf equation (4.4)) and the imaginary part of ln ζ(z) finally displays a discontinuity with infinite
jump. Thus, at the critical point J = Jc the ζ -function develops an essential singularity at
z = 1/2. The asymptotic expansion reads (cf equation (3.16b))

ζ(z) � exp(C(1 − 2z)−1/4), (J = Jc, z → 1/2) (4.9)

where the numerical value of C is approximately given by C = 4.880199.
Summarizing the results, equations (4.1), (4.2), (4.8) and (4.9), we find a quite

sophisticated analytical behaviour of the ζ -function. Even in the high-temperature phase,
the function is not meromorphic contrary to models with short-range interaction. That is,
however, not surprising since from a formal perspective a global interaction is never small,
no matter the size of the coupling constant J . In the low-temperature phase, we expect two
branch points, one corresponding to the thermodynamic stable and one corresponding to the
metastable state. The exponents are essentially determined by the square root of the respective
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formal susceptibilities. Our results have been entirely based on the properties of potential
(2.4). Thus any ‘double well’ potential produces the same structure of the ζ -function, and our
expansions yield the generic properties of ζ -functions for Ginsburg–Landau models.

We have studied in detail the influence of a mean field ferromagnetic phase transition on
the analytical properties of the Ruelle ζ -function. Although our model is quite simple, such
a result may be useful to test the quality of approximation schemes when ζ -functions in the
presence of phase transition points have to be evaluated. The dimensionality of the underlying
lattice did not play any role in our considerations. Actually, the definition of ζ -functions
for higher-dimensional lattices is far from obvious and the question is far from being settled
(cf [11]). Thus our results may contribute as well to the question how to introduce appropriate
ζ -functions in such a setup.

Appendix A. Partition function

If S = ∑
ν σν denotes the total magnetization and gS the multiplicity of states with

magnetization S, then the partition function reads

ZN =
∑

S

gS exp(HS + JS2/(2N))

=
∑

S

gS exp(HS)
1√
π

∫ ∞

−∞
exp(−y2 + yS

√
2J/N) dy (A.1)

Using S = −N + 2k, k = 0, . . . , N , and gS = (
N

k

)
, equation (A.1) results in

ZN =
√

N

π

∫ ∞

−∞
exp(−Nx2)

N∑
k=0

(
N

k

)
exp(−(x

√
2J + H)(N − 2k)) dx

=
√

N

π

∫ ∞

−∞
exp(−Nx2) exp(−N(x

√
2J + H))(exp(2x

√
2J + 2H) + 1)N dx

= 2N

√
N

π

∫ ∞

−∞
exp(−Nx2) coshN(x

√
2J + H) dx (A.2)

which in fact coincides with equation (2.3).

Appendix B. Polylogarithm

Analytical properties of polylogarithm (2.6) are well known [8, 9]. Here we concentrate on
a few essential features. The polylogarithm is analytic apart from z = 1. At that point the
asymptotic relation

Lis[z] � �(1 − s)

(1 − z)1−s
, (Re s < 1) (B.1)

holds while for s = 1 we obviously have

Lis=1[z] = − ln(1 − z). (B.2)

In addition, by direct computation we obtain the identity∫ ∞

0
xαLis[z exp(−x)] dx =

∞∑
N=1

∫ ∞

0

zN

Ns+α+1
yα exp(−y) dy

= Lis+α+1[z]�(1 + α) (α > −1, |z| < 1). (B.3)
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For the finite integral the leading singularity occurs at z = 1 since both factors xα and
Ls[z exp(−x)] become singular at x = 0 in this limit. Thus expression (B.3) is indeed valid
as an asymptotic result for the finite integral as well. In connection with equations (B.1) and
(B.2), we hence obtain for z � 1∫ c

0
xαLis[z exp(−x)] dx � �(−s − α)�(1 + α)(1 − z)s+α, (−s > α > −1) (B.4)

and ∫ c

0
x−sLis[z exp(−x)] dx � −�(1 − s) ln(1 − z), (s < 1). (B.5)

Appendix C. Analytic continuation of Li1/2(z)

Using the obvious identity

1√
n

= 1√
π

∫ ∞

0

exp(−nt)√
t

dt (C.1)

we obtain from series (2.6)

Li1/2[z] = 1√
π

∫ ∞

0

∞∑
n=1

zn exp(−nt)√
t

dt = 1√
π

∫ ∞

0

1√
t

z

exp(t) − z
dt (C.2)

which is the well-known integral representation of the polylogarithm. The integral converges
for any complex z values apart from a cut along the real axis, z > 1. Thus equation (C.2) yields
the proper analytical continuation. It is precisely this main branch we are using throughout
our analysis. Actually, the main branch obeys (Li1/2(z))

∗ = Li1/2(z
∗).

The behaviour of the polylogarithm along the cut can be evaluated explicitly. Using
equation (C.2) we have

Li1/2[x + iε] − Li1/2[x − iε] = 2i√
π

∫ ∞

0

1√
t

ε exp(t)

(exp(t) − x)2 + ε2
dt

= 2i
√

π

∫ ∞

1

1√
ln y

ε/π

(y − x)2 + ε2
dy. (C.3)

As in the limit ε → 0+ the second factor in the integral yields the δ-function we obtain for the
difference of the polylogarithm between a point on the upper edge of the cut and a point on
the lower edge of the cut the result

�Li1/2(x) = lim
ε→0+

(Li1/2[x + iε] − Li1/2[x − iε]) =

2i

√
π

ln x
if x > 1

0 if x � 1.

(C.4)

All these considerations are textbook knowledge [8] and can be generalized easily to other
values of the parameter s.

Appendix D. Kramers–Kronig-type relations

The real and imaginary parts of Li1/2[z] are related by a Kramers–Kronig-type relation. A
similar property can then be deduced for the logarithm of the ζ -function.
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Thanks to the integral representation (C.2) Li1/2[z]/z is analytic in the lower half plane
and decays if |z| → ∞. By Cauchy’s integral formula, we have for any point z in the interior
of the lower half of the complex plane

Li1/2[z]

z
= − 1

2π i

∮
C

Li1/2[w]/w

w − z
dw (D.1)

where we choose for the contour C the lower edge of the real axis, i.e. w = y − i0+, and a
semicircle (of infinite radius) in the lower half of the complex plane. As the integration along
the semicircle does not contribute to the integral, we are left with

Li1/2[z]

z
= − 1

2π i

∫ ∞

−∞

1

y − z

Li1/2(y)

y
dy (D.2)

where we use the shorthand notation Li1/2(y) = Li1/2[y − i0+] to indicate the value of the
polylogarithm on the lower edge of the real axis. Considering now z = x − iε, taking the limit
ε → 0+, and using the usual identity 1/(y − x + i0+) = 1/(y − x) − iπδ(y − x), we obtain

Li1/2(x)

x
= i

π
P

∫ ∞

−∞

1

y − x

Li1/2(y)

y
dy (D.3)

where P

∫
denotes the Cauchy principal value. Considering real and imaginary parts we end up

with the Kramers–Kronig-type relation mentioned at the beginning,

Re(Li1/2(x)) = − 1

π
P

∫ ∞

−∞

x

y(y − x)
Im(Li1/2(y)) dy

Im(Li1/2(x)) = 1

π
P

∫ ∞

−∞

x

y(y − x)
Re(Li1/2(y)) dy.

(D.4)

These relations translate directly into corresponding conditions for the logarithm of the ζ -
function when equation (2.5) is employed and the convergence of the integrals is presupposed

Re(ln ζ(x)) = − 1

π
P

∫ ∞

−∞

x

y(y − x)
Im(ln ζ(y)) dy

Im(ln ζ(x)) = 1

π
P

∫ ∞

−∞

x

y(y − x)
Re(ln ζ(y)) dy.

(D.5)

The existence of such a relation is an analytical indicator that the logarithm of the ζ -function
has no singularities off the real axis.

Appendix E. Asymptotic expansion of hyperelliptic integrals

Consider

I1 =
∫ c

d

1√
−ε2 + u2f (u)

du (E.1)

where f (u) has a simple zero at say u = c0 > 0, f (u) > 0 if 0 � u < c0 and the limits of
integration are the singularities of the kernel. That means

ε2 = d2f (d) = c2f (c) (E.2)

where d → 0 and c → c0 if ε → 0. To obtain the asymptotic properties of equation (E.1) in
such a limit take a small but fixed value δ > 0 and split the integral into two parts:

I1 =
∫ δ

d

1√
−ε2 + u2f (u)

du +
∫ c

δ

1√
−ε2 + u2f (u)

du. (E.3)
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The second term remains bounded, uniformly in ε, since the singularity at the upper limit stays
integrable for ε = 0. Thus the asymptotic properties are determined by the first part

I1 �
∫ δ/ε

d/ε

1√
−1 + v2f (vε)

dv

= 1√
f (d)

∫ δ
√

f (d)/ε

1

1√
−1 + y2f (εy/

√
f (d))/f (d)

dy

� 1√
f (d)

∫ δ/d

1

1

y

√
f (d)

f (yd)
dy

= 1√
f (d)

∫ δ/d

1

1

y
dy +

1√
f (d)

∫ δ/d

1

1

y

√
f (d) − √

f (yd)√
f (yd)

dy (E.4)

where we have used 0 � εy
√

f (d) = yd � δ (cf equation (E.2)). As d → 0 when ε → 0 the
second term remains at least bounded when we impose Lipschitz continuity on f . Hence the
asymptotic behaviour of integral (E.1) is given by

I1 � 1√
f (0)

ln

(
δ

d

)
� − ln ε√

f (0)
. (E.5)

If we now choose ε2 = − ln(2x) and u2f (u) = −g(u) and observe that ε2 � 2(1/2 − x) and
−g′′(0) = 2f (0), we obtain from equation (E.5) result (4.7) for x < 1/2.

For the opposite case consider

I2 =
∫ c

0

1√
ε2 + u2f (u)

du (E.6)

and follow a similar reasoning. Splitting, as before, the integral into two parts the asymptotic
properties are given by

I2 �
∫ δ/ε

0

1√
1 + v2f (εv)

dv

= 1√
f (d)

∫ δ
√

f (d)/ε

0

1√
1 + y2f (εy/

√
f (d))/f (d)

dy

� 1√
f (d)

∫ δ/d

1

1

y

√
f (d)

f (yd)
dy

� − ln ε√
f (0)

. (E.7)

Choosing ε2 = ln(2x) and u2f (u) = −g(u), equation (E.7) yields result (4.7) for x > 1/2.
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